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Figure 1: PS 4-chord types, n = 12.
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1 Pitch-Symmetric Tetrachords

in a Twelve-Tone Scale1

A particular technique of twelve-tone musical composition which I frequently employ
makes extensive use of four-element pitch-class sets2—tetrachords or 4-chords—which
are inversionally pitch-symmetric (PS). These are sets like

{A, C, E, G}, in which A is nominally as far below C (three semitones) as G is
nominally above E; or

{C, D, E, G]}, in which C is nominally as far below D (a whole tone) as E is
nominally above it, and G] is a tritone away from D, so equally distanced from
C and E.

As for twelve-tone composition in general, the full set of available pitch classes com-
prises the conventional twelve.3

Figure 1 shows diagrammatically all types of these PS tetrachords in the twelve-
pitch-class context; in each circle of Figure 1, the twelve positions represent distinct
pitch classes, the four marked with heavier dots representing those constituting a
particular PS tetrachord. In the centre of each circle is a symbol specifying the type
of the tetrachord represented. Each of these type specifications is either of the form

〈u, v〉, specifying u steps clockwise from the first (12 o’clock) tetrachord element

to the second,

v steps from the second to the third,

and again u steps from the third to the fourth,

(so 12− (2u + v) steps from the fourth on again to the first);
(1.1)

1My interest in this subject was triggered by Elliott Antokoletz’s The Music of Béla Bartók
(University of California Press, 1984), which in turn makes several references to George Perle’s
“Symmetrical Formations in the String Quartets of Béla Bartók” (Music Review no. 16 [November
1955], pp 300-312).

2In this article, “set” denotes a collection considered without regard to any particular order of
its elements. This is the usual mathematical sense of the word, as opposed to a sense sometimes
used in musical theory, according to which “set” is equivalent to “row”.

3corresponding to the notes within an octave on a piano.
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or of the form

〈u〉, specifying u steps clockwise from the first (12 o’clock) tetrachord element

to the second,

again u steps from the second to the third,

and 6− u steps from the third to the fourth,

(so again 6− u steps from the fourth on again to the first).

(1.2)

It is to be understood that the type of a tetrachord is independent of its rotational
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Figure 2: Three PS tetrachords of type 〈1, 2〉.

position. For example, the PS tetrachords of Figure 2 are all of the same type,
namely 〈1, 2〉.

Figure 1 may be accepted as an (extensional) definition of inversional pitch-class
symmetry for tetrachords in the twelve-pitch-class context: the PS tetrachords being
exactly the pitch-class sets of the types shown. However, Figure 1 also suggests, and
I hereby adopt, a more general intensional definition which is equivalent in this case:

a pitch-class set is PS if and only if it coincides with its own reflection

in a diameter of the pitch-class circle.
(1.3)

For example, the tetrachord illustrating PS type 〈1, 2〉 in Figure 1 coincides with its
own reflection in the 2 o’clock-8 o’clock diameter. For tetrachords, definition (1.3) is
equivalent to defining one to be PS if and only if it and its reflection have the same
type.

I trust that, with careful consideration, most readers will find:

• definition (1.3) for the relevant sort of symmetry to be clear and rigourous
enough,
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• the principles guiding the enumeration of Figure 1 to be intuitively apparent,
and therefore

• the enumeration itself complete.4

An exact musical interpretation of the foregoing depends on how the twelve
(clock) positions in each component of Figure 1 are taken to represent the con-
ventional pitch classes. This can be done in several ways without affecting pitch-
symmetry. The two most important are shown in Figure 3. Taking the integers
0, 1, . . . , 11 to specify pitch classes according to the number of semitones they lie
nominally above an specified reference pitch class, the left-hand member of Figure 3
shows a circle of semitones; the right-hand member shows the familiar circle of per-
fect fifths. As suggested by the caption, each step on the left corresponds exactly to
seven steps on the right and vice-versa.
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Figure 3: Inner automorphism x 7→ 7x (mod 12) of Z12 .

To say that the choice between the circle-of-semitones and circle-of-fifths inter-
pretations does not affect pitch symmetry is merely to say that a given pitch-class
set is either PS according to both interpretations (like, e.g. {0, 1, 2, 3}) or according
to neither (like, e.g. {0, 1, 2, 4}). This does not imply that the type of a given PS
tetrachord is the same in both interpretations or that a given PS type specifies the
same pitch sets in both. In fact, {0, 1, 2, 3}, for example, is PS of type 〈1, 1〉 in the
circle of semitones, but of type 〈2, 3〉 in the circle of fifths. Conversely, the PS tetra-
chord type 〈1, 1〉 specifies semitone clusters in the circle-of-semitones interpretation,
but pure quartal/quintal sonorities in the circle-of-fifths interpretation.

Tables 1 and 2 show some points of musical significance for all the (twelve-tone)
PS tetrachord types. Table 1 is based on the interpretation of the symbols 〈1, 1〉,

4To see that the forms (1.1) and (1.2) exhaust the possibilities, consider that a PS 4-chord must
have an even number of elements (hence 0 or 2) on the reflecting diameter.
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symbol* Perle number Forte number interval vector equivalent**

〈1, 1〉 3 4-1 〈3, 2, 1, 0, 0, 0〉 〈2, 3〉
〈1, 2〉 8 4-3 〈2, 1, 2, 1, 0, 0〉 〈3, 2〉
〈1, 3〉 9 4-7 〈2, 0, 1, 2, 1, 0〉 〈4, 1〉

〈1, 4〉 10 4-8 〈2, 0, 0, 1, 2, 1〉 〈1, 4〉
〈1, 5〉 2 4-9 〈2, 0, 0, 0, 2, 2〉 〈1, 5〉
〈2, 1〉 4 4-10 〈1, 2, 2, 0, 1, 0〉 〈2, 1〉

〈2, 2〉 11 4-21 〈0, 3, 0, 2, 0, 1〉 〈2, 2〉
〈2, 3〉 5 4-23 〈0, 2, 1, 0, 3, 0〉 〈1, 1〉
〈2, 4〉 7 4-25 〈0, 2, 0, 2, 0, 2〉 〈2, 4〉

〈3, 1〉 12 4-17 〈1, 0, 2, 2, 1, 0〉 〈3, 1〉
〈3, 2〉 13 4-26 〈0, 1, 2, 1, 2, 0〉 〈1, 2〉
〈3, 3〉 1 4-28 〈0, 0, 4, 0, 0, 2〉 〈3, 3〉

〈4, 1〉 14 4-20 〈1, 0, 1, 2, 2, 0〉 〈1, 3〉
〈1〉 6 4-6 〈2, 1, 0, 0, 2, 1〉 〈1〉
〈2〉 15 4-24 〈0, 2, 0, 3, 0, 1〉 〈2〉

* circle-of-semitones interpretation
** circle-of-fifths interpretation
Perle number (as “four-note collection”): see George Perle, Serial Composition

and Atonality, University of California Press, (6th ed., rev.) 1991, pp 149f.
Forte number: see Allen Forte, The Structure of Atonal Music, Yale University

Press, 1973.
interval vector: numbers of intervals within the tetrachord comprising respectively

1, 2, 3, 4, 5, and 6 semitones.

Table 1: PS tetrachord types, further details (1).
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symbol* acoustic root content descriptive name equivalent**

〈1, 1〉 0 {M2, P5, M6} 0Q 〈2, 3〉
7 {M2, P4, P5}
2 {P4, P5, m7}

〈1, 2〉 9 {m3, P5, m7} 9N 〈3, 2〉
0 {M3, P5, M6}

〈1, 3〉 0 {M3, P5, M7} 0M 〈4, 1〉
4 {m3, P5, m6}

〈1, 4〉 0 {A4, P5, M7} 0T 〈1, 4〉
11 {m2, P5, m6}

〈1, 5〉 0, 6 {A1, A4, P5} 0X, 6X 〈1, 5〉

〈2, 1〉 2 {P5, M6, m7} 2V 〈2, 1〉

〈2, 2〉 0 {M2, M3, A4} 0W 〈2, 2〉
2 {M2, M3, m7}

〈2, 3〉 11 {m2, M2, m3} 11S 〈1, 1〉

〈2, 4〉 2, 8 {M3, d5, m7} 2F, 8F 〈2, 4〉

〈3, 1〉 9 {m3, M3, P5} 9L 〈3, 1〉

〈3, 2〉 8 {m2, m3, d4} 8K 〈1, 2〉

〈3, 3〉 0, 3, 6, 9 {m3, d5, d7} 0D, 3D, 6D, 9D 〈3, 3〉

〈4, 1〉 4 {P5, m6, M7} 4U 〈1, 3〉

〈1〉 0 {m2, M2, P5} 0R 〈1〉
7 {P4, d5, P5}

〈2〉 0 {M2, M3, m6} 8A 〈2〉
4 {d4, m6, m7}
8 {M3, A4, A5}

* circle-of-fifths interpretation
** circle-of-semitones interpretation
acoustic root: nominally lower pitch class of a P5, M3, or m3 interval within the tetrachord.
content: relative to the indicated acoustic root as P1.
descriptive name: numbers may conveniently be replaced by usual pitch-class names—C, C], etc.

Table 2: PS tetrachord types, further details (2).
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etc with reference to the circle of semitones; Table 2 with reference to the circle of
fifths. The descriptive names in Table 2 are ones I use as chord or function symbols
in analytical phases of my compositional work.

2 Generalization

The foregoing generalizes readily (if a bit fussily), as follows.

Let n and k be integers, 2 ≤ k ≤ n. Then the sequence of intervals of a PS k-chord
in an n-step scale has one of the following three forms:

u1 . . . , uL, v, uL . . . , u1, w, where k is even, k ≥ 4 , (2.1)

L =
k

2
− 1 ,

w = n− (2
L∑

i=1

ui + v),

(without loss of generality, v ≤ w)

symbol: 〈u1 . . . , uL, v〉 (a k
2
-tuple);

u1 . . . , uL, uL . . . , u1, w, where k is odd, k ≥ 3 , (2.2)

L =
k − 1

2
,

w = n− 2
L∑

i=1

ui

symbol: 〈u1 . . . , uL〉 (a k−1
2

-tuple);

u1 . . . , uL, uL . . . , u1, where n and k are both even, k ≥ 2 , (2.3)

L =
k

2
,

uL =
n

2
−

L−1∑
i=1

ui ,

(without loss of generality, u1 ≤ uL)

symbol: 〈u1 . . . , uL−1〉 (a (k
2
− 1)-tuple).
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Figure 4: Example PS 4- and 5-chord types, n = 9.

Figure 4 shows two examples in a nine-pitch-class context. Note that interpreta-
tion of the 〈. . .〉 symbols depends on k. This is true for all n, but is not especially
bothersome; in practice one is normally interested in particular values of k as well
as n.

3 PS Hexachords in a Twelve-Tone Scale

Figure 5 shows all the PS 6-chord (hexachord) types in a twelve-pitch-class context
(k = 6, n = 12). Necessarily, the complement5 of a set of any of these types is also
a PS hexachord. For six of the types, the complements are of the same type as the
originals; these types, which may be called self-complementary, are marked (*).

Because PS hexachords characterize a class of tone rows important for twelve-tone
serial composition (see page 13), I now digress briefly to that subject.

A tone row is a particular ordering of the twelve conventional pitch classes. A
tone row is typically used along with one or more of its other transformations: its
retrograde, its inversion, its retrograde inversion, or transpositions of any of these
or of itself. A tone row is said to be combinatorial (or semi-combinatorial)6 if the
first six pitch classes of one or more of its transformations other than its retrograde7

are complementary to the first six pitch classes of its original form. The following

5I.e. the pitch classes (among the twelve) which are not members of the set.
6These terms may be further qualified as “hexachordally” or “by hexachords”.
7Trivially, any row combines in the indicated way with its own retrograde.
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Figure 5: PS 6-chord types, n = 12. (* indicates self-complementary.)
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combinatoriality

symbol* Perle number Forte number interval vector T I RI

〈1, 1, 1〉 4 6-1 〈5, 4, 3, 2, 1, 0〉 • • •
〈1, 1, 2〉 7B 6-Z4 〈4, 3, 2, 3, 2, 1〉 •
〈1, 1, 3〉 8B 6-Z6 〈4, 2, 1, 2, 4, 2〉 •

〈1, 1, 4〉 3 6-7 〈4, 2, 0, 2, 4, 3〉 • • •
〈1, 2, 1〉 9A 6-Z13 〈3, 2, 4, 2, 2, 2〉 •
〈1, 2, 2〉 10B 6-Z26 〈2, 3, 2, 3, 4, 1〉 •

〈1, 2, 3〉 11B 6-Z29 〈2, 2, 4, 2, 3, 2〉 •
〈1, 3, 1〉 2 6-20 〈3, 0, 3, 6, 3, 0〉 • • •
〈1, 3, 2〉 13B 6-Z49 〈2, 2, 4, 3, 2, 2〉 •

〈1, 4, 1〉 8A 6-Z38 〈4, 2, 1, 2, 4, 2〉 •
〈2, 1, 1〉 5 6-8 〈3, 4, 3, 2, 3, 0〉 • • •
〈2, 1, 2〉 12B 6-Z23 〈2, 3, 4, 2, 2, 2〉 •

〈2, 2, 1〉 6 6-32 〈1, 4, 3, 2, 5, 0〉 • • •
〈2, 2, 2〉 1 6-35 〈0, 6, 0, 6, 0, 3〉 • • •
〈2, 3, 1〉 11A 6-Z50 〈2, 2, 4, 2, 3, 2〉 •

〈3, 1, 1〉 9B 6-Z42 〈3, 2, 4, 2, 2, 2〉 •
〈1, 1〉 7A 6-Z37 〈4, 3, 2, 3, 2, 1〉 •
〈1, 2〉 12A 6-Z45 〈2, 3, 4, 2, 2, 2〉 •

〈1, 3〉 10A 6-Z48 〈2, 3, 2, 3, 4, 1〉 •
〈2, 1〉 13A 6-Z28 〈2, 2, 4, 3, 2, 2〉 •
* circle-of-semitones interpretation
Perle number (as “six-note collection”): see George Perle, Serial Composition and

Atonality, University of California Press, (6th ed., rev.) 1991, pp 153-155. Note that
7A and 7B, 8A and 8B, etc are complementary types.

Forte number: see Allen Forte, The Structure of Atonal Music, Yale University Press, 1973.
interval vector: numbers of intervals within the hexachord comprising respectively

1, 2, 3, 4, 5, and 6 semitones.
combinatoriality: see text, pages 9f.

Table 3: PS hexachord types, further details.
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examples illustrate this.8

P0 = 〈0, 1, 3, 4, 5, 8, 2, 6, 7, 9, 10, 11〉
P6 = 〈6, 7, 9, 10, 11, 2, 8, 0, 1, 3, 4, 5〉

(3.1)

P0 = 〈0, 4, 3, 2, 1, 6, 5, 7, 8, 9, 10, 11〉
I11 = 〈11, 7, 8, 9, 10, 5, 6, 4, 3, 2, 1, 0〉

(3.2)

P0 = 〈0, 1, 2, 4, 5, 6, 3, 7, 8, 9, 10, 11〉
RI6 = 〈7, 8, 9, 10, 11, 3, 0, 1, 2, 4, 5, 6〉

(3.3)

These rows are said to be respectively (semi-)combinatorial by transposition (3.1),
by inversion (3.2), and by retrograde inversion (3.3). The musical reason for using
such combinatorial pairs together is to allow for passages which retain the feature of
non-repetition of pitch classes (generally characteristic of twelve-tone music) while
varying internal content such as interval successions.

A tone row’s combinatorial character in the above sense is clearly determined
solely by the unordered hexachord comprising its first six pitch classes—in fact,
solely by that hexachord’s type (in the sense indicated at the beginning of this
article, whereby all transpositions of a given hexachord are of the same type). The
following facts are evident or readily deducible from the relevant definitions.

• A tone row is combinatorial by transposition if and only if the hexachord type
of its first six pitch classes is self-complementary.

• A tone row is combinatorial by inversion if and only if the hexachord compris-
ing the complement of its first six pitch classes (equivalently, the hexachord
comprising its last six pitch classes) is an inverse9 of the hexachord comprising
its first six pitch classes.

• A tone row is combinatorial by retrograde inversion if and only if the hexachord
comprising its first six pitch classes is PS.

• A tone row satisfying any two of the above three criteria satisfies all three.
Such tone rows are said to be fully combinatorial or all-combinatorial.

8Various notations for the transformations of a row are in use. That used here is typical.
9Two pitch class sets are said to be inverses of one another if their members can be paired so

that all pairs have the same sum modulo 12. E.g. the two rows in example (3.2), where the pairs
all sum to 11.
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We have reached the objective of this digression. The PS hexachord types (shown
in Figure 5 and Table 3) are exactly those corresponding to tone rows combinatorial
by retrograde inversion. The PS hexachord types which are also self-complementary,
marked (*), correspond to fully combinatorial tone rows. For example (a row with
first six pitch classes a hexachord of type 〈2, 2, 1〉):

P0 = 〈0, 2, 4, 5, 7, 9, 1, 3, 6, 8, 10, 11〉
P6 = 〈6, 8, 10, 11, 1, 3, 7, 9, 0, 2, 4, 5〉
I3 = 〈3, 1, 11, 10, 8, 6, 2, 0, 9, 7, 5, 4〉

RI9 = 〈10, 11, 1, 3, 6, 8, 0, 2, 4, 5, 7, 9〉

All twelve-tone hexachord types, both combinatorial and noncombinatorial, are
enumerated in “Hauer’s Tropes and the Enumeration of Twelve-Tone Hexachords”
on this website.

4 A Formal Treatment

This section provides a formal justification for the assertion made above (page 8) that
the sequence of intervals of a PS k-chord in an n-step scale has one of the three forms
(2.1)-(2.3). In the end, this boils down to subscript-chasing and may well therefore
be no more compelling than the bald assertion, which seems to me intuitively hard
to doubt. Still, in the words of Dostoevsky,10 since it is already written, let it stand.

4.1 Nomenclature

The universe of discourse here is Zn, the cyclic group with elements {0 . . . , n− 1}.11

Here Zn is considered only as an additive group; multiplication in Zn is not relevant.
Elements of Zn are referred to as pitch-classes or intervals. As usual, for P ⊆ Zn,
t ∈ Zn, P + t = {p + t | p ∈ P}, −P = {−p | p ∈ P}.

For 0 ≤ k ≤ n, define a k-chord to be a set of k distinct pitch classes (i.e. distinct
elements of Zn). For 1 ≤ k ≤ n, define a k-chord type to be a set of k − 1 distinct
non-zero intervals (i.e. distinct non-zero elements of Zn). For a given k-chord type

T = {i1 . . . , ik−1}, (4.1)

10The Brothers Karamazov, “From the Author”.
11I.e. the integers modulo n. For example, in Z12, 7 + 7 = 2, 7 + 5 = 0, 5− 7 = 10, −8 = 4.
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say that a set of pitch-classes C ⊆ Zn realizes T if and only if there is some r ∈ Zn

such that
C = {r, r + i1 . . . , r + ik−1}. (4.2)

Necessarily, such a set C is a k-chord. Together, (4.1) and (4.2) specify the nomen-
clature used here: A k-chord type T comprises the set of k − 1 intervals from a
particular pitch class r in a realization C to all the other pitch classes of C. For
example, the 3-chord type {4, 7} in Z12 (major third, perfect fifth) is realized by
both {0, 4, 7} and {3, 7, 10}.12 Trivially, the unique 1-chord type ∅ is realized by {r}
for any r ∈ Zn.

Since the negative of a non-zero element of Zn is non-zero, −T is a k-chord type
if and only if T is. Furthermore, −C realizes −T if and only if C realizes T .

For further discussion of k-chord types, it is convenient to define the completion
T̂ of a k-chord type T as the set obtained by adjoining 0 to T :

T̂ = T ∪ {0}.

With this definition, (4.1) and (4.2) may be more compactly related by saying that
a set of pitch-classes C ⊆ Zn realizes a k-chord T if and only if there is some r ∈ Zn

such that
C = T̂ + r.13 (4.3)

In particular, T̂ = T̂ + 0 is a realization of T .

Obviously −̂T = −T̂ .

4.2 Equivalence of k-chord types

Distinct k-chord types as defined here are not necessarily functionally different. For
example, as well as {4, 7}, the 3-chord type {3, 8} (minor third, minor sixth) is also
realized by both {0, 4, 7} and {3, 7, 10} in Z12. For k-chord types T and U , say
T is equivalent to U (T ≡ U) if and only if they are realized by the exactly the
same subsets (k-chords) of Zn.14 Obviously, ≡ is an equivalence relation in the usual
mathematical sense for k-chord types in Zn.

12As usual, the order in which set elements are written is insignificant; {7, 3, 10} = {10, 3, 7}, etc.
13Of course, I could have included 0 in all k-chord types by definition, making the notion of

completion unnecessary, but I prefer to make the sufficiency of k− 1 intervals to express a k-chord
type as obvious as possible.

14The notion of k-chord type defined here does not distinguish among chord inversions in the
musical sense.
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It is easy to see that

T ≡ U if and only if Û = T̂ + r for some r ∈ Zn. (4.4)

For example, in Z12: {̂4, 7} = {0, 4, 7} = {8, 0, 3}+4 = {̂3, 8}+4, and {3, 8} ≡ {4, 7}.

Since 0 ∈ Û , it is also easy to see that

T ≡ U if and only if Û = T̂ − i for some i ∈ T̂ . (4.5)

It follows that the ≡-equivalence class of a given k-chord type has at most k members;
that is, that a given k-chord type is equivalent to at most k− 1 other k-chord types.
For example, in Z12: {0, 4, 7} − 4 = {8, 0, 3}, {0, 4, 7} − 7 = {5, 9, 0}, and the set
of 3-chord types equivalent to {4, 7} comprises exactly {4, 7}, {3, 8}, and {5, 9}. A
k-chord type can have fewer than k ≡-equivalents. For example, the 4-chord type
{3, 6, 9} in Z12 is ≡-equivalent only to itself.

It is also easy to see that

−T ≡ −U if and only if T ≡ U. (4.6)

4.3 Pitch-Class Symmetry

Say that C ⊆ Zn is pitch-symmetric15 (PS) if and only if

−C = C + r for some r ∈ Zn.
16 (4.7)

For example, in Z12: {0, 3, 7, 10} (minor seventh chord) is PS since −{0, 3, 7, 10} =
{0, 9, 5, 2} = {0, 3, 7, 10} + 2. On the other hand, {0, 3, 7} (minor triad) is not PS,
as the only forms of {0, 3, 7} + r containing 0 are {0, 3, 7}, {0, 4, 9}, and {0, 5, 8},
whereas −{0, 3, 7} = {0, 5, 9}. Any set of two or fewer elements of Zn is PS.

One would expect this notion of pitch symmetry to extend naturally to k-chord
types, and it does. Suppose C and D both realize some k-chord type T and that C
is PS. Then, applying (4.3) and (4.7), it is easy to see that D is also PS. It follows
that either all or none of the realizations of a given k-chord type are PS.

15As in Sections 1-3 above, the symmetry considered here can be visualised as reflection in a
diameter of a circular arrangement of n points representing the elements of Zn. This corresponds
to pitch-class inversion, but not in the special sense the term “inversion” has with respect to chords
in music—hence my avoidance of the term “inversion”. (See previous footnote.)

16The “+r” terms here and in (4.3) and (4.4), corresponding to musical transposition, are properly
visualized as rotation in the circular representation of Zn.
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Define a k-chord type T to be pitch-symmetric (PS) if and only if a realization
of T is pitch-symmetric. By the above, this is equivalent to requiring that every
realization of T be PS. From (4.3)-(4.7), a k-chord type T is PS if and only if

−T ≡ T. (4.8)

4.4 Characterization of PS k-Chord Types

It may not be completely obvious how (4.7) or (4.8) capture the idea of pitch sym-
metry in k-chords, and there are one or two subtleties. This section provides all
details.

Let T be a PS k-chord type and let

T̂ = {i0, i1 . . . , ik−1}, with 0 = i0 < i1 . . . < ik−1 < n in Z.17

Then

−T̂ = {i0, n− ik−1 . . . , n− i1} and 0 = i0 < n− ik−1 . . . < n− i1 < n . (4.9)

Since T is PS, it is also true (by (4.5), (4.7), and (4.8)) that, for some m with
0 ≤ m < k,

−T̂ = {(i0 − im) mod n, (i1 − im) mod n . . . , (ik−1 − im) mod n}.18 (4.10)

For example, let n = 24, k = 8, and let X be the PS type {3, 5, 6, 8, 11, 15, 20} as in
Figure 6. Then

X̂ = {0, 3, 5, 6, 8, 11, 15, 20} and − X̂ = {0, 4, 9, 13, 16, 18, 19, 21}
= {13, 16, 18, 19, 21, 0, 4, 9}
= {(0− 11) mod n . . . , (20− 11) mod n};

in this case m = 5, im = 11.

(For this subsection, let x denote x mod k.) The elements listed in (4.10) increase
from n+ (i0− im) to n+ (im−1− im) and, if m 6= 0, from 0 = im− im to ik−1− im (in

17Throughout this section, i0, i1 . . . , ik−1 are mainly considered as elements of Zn, where < is
not defined. In this subsection, however, “<” refers to their relation in Z; i.e. simply as integers,
albeit elements of {0, 1 . . . , n− 1}. (Subscripts are always treated as elements of Z.)

18For y 6= 0, x mod y = x− y · bx/yc, where buc denotes the largest integer ≤ u.
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Figure 6: Example PS 8-chord type, n = 24.

the example, from 13 to 21 and from 0 to 9). Also ik−1− im < n− im = n+(i0− im).
Accordingly, in ascending order, the terms of (4.10) are:

−T̂ = {0 = im − im . . . , ik−1 − im, n + (i0 − im) . . . , n + (im−1 − im)}.19 (4.11)

The elements of −T̂ must be equal term by term as written in (4.9) and (4.11).
To make good use of this fact, for 0 ≤ j < k, define

zj = i j+1 − ij (i.e. z0 = i1 − i0, z1 = i2 − i1 . . . , zk−1 = i0 − ik−1).

These zj are the intervals (differences) between adjoining pitch classes in the enu-
merations (4.9) and (4.11). Now the interval between the first two pitch classes in
(4.9) is

(−ik−1)− 0 = i0 − ik−1 = zk−1,

and the interval between the first two pitch classes in (4.11) is

(im+1 − im)− (im − im) = im+1 − im = zm,

since (4.9) and (4.11) are identically arranged, zk−1 = zm. Proceeding thus through
all the adjoining pairs of pitch classes in (4.9) and (4.11), one finds

zk−1 = zm

...

zm = zk−1

zm−1 = z0

...

z0 = zm−1 ,

(4.12)

19If m = 0, the second part of this enumeration is empty.
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where z-subscripts on the left (from (4.9)) decrease from k− 1 to 0, and z-subscripts
on the right (from (4.11)) increase from m to k − 1 and from 0 to m− 1.20 (In the
example,

z7 = z5 = 4

z6 = z6 = 5

z5 = z7 = 4

z4 = z0 = 3

z3 = z1 = 2

z2 = z2 = 1

z1 = z3 = 2

z0 = z4 = 3 .)

The general significance of (4.12) is that an ordered enumeration of the inter-

vals between adjoining pitch classes of T̂ (and therefore of any realization of T )
comprises a sequence of k intervals in which both the first k − m and the last m
are palindromic. Since these two palindromes meet end-to-end in the circle of pitch
classes represented by Zn, it follows that the whole k-element sequence of intervals
has the mirror symmetry we expect.

To work out in detail the significance of (4.12), it is necessary to consider cases.
For this purpose, let p = k+m−1

2
and q = m−1

2
. Note that p− q = k

2
.

If k is even and m is odd (as in the example), then p and q are both integers, and
the enumeration (4.12) includes two vacuous equations:

zp = zp

zq = zq .

In this case, the sequences 〈z p+1 . . . , z q−1〉 and 〈z q+1 . . . , z p−1〉 (subscripts wrapping
around from k − 1 to 0 as necessary) are reversals of one another, and (4.12) corre-
sponds exactly with the form (2.1), where

〈u1 . . . , uL, v, uL . . . , u1, w〉 = 〈z p+1 . . . , z q−1, zq, z q+1 . . . , z p−1, zp〉.

If k is odd, then exactly one of p and q is an integer. Suppose m is even; then p
and q± 1

2
are integers, and the enumeration (4.12) includes just one vacuous equation:

zp = zp .

20If m = 0, the second part of the enumeration (4.12) is empty.

18



In this case, the sequences 〈z p+1 . . . , z
q− 1

2

〉 and 〈z
q+ 1

2

. . . , z p−1〉 (subscripts wrap-

ping around from k − 1 to 0 as necessary) are reversals of one another, and (4.12)
corresponds exactly with the form (2.2), where

〈u1 . . . , uL, uL . . . , u1, w〉 = 〈z p+1 . . . , z
q− 1

2

, z
q+ 1

2

. . . , z p−1, zp〉.

Similarly if k and m are both odd.

If k and m are both even, then neither p nor q is an integer, and the enumeration
(4.12) includes no vacuous equations. In this case, the sequences 〈z

p+ 1
2

. . . , z
q− 1

2

〉
and 〈z

q+ 1
2

. . . , z
p− 1

2

〉 (subscripts wrapping around from k − 1 to 0 as necessary) are

reversals of one another, and (4.12) corresponds exactly with the form (2.3), where

〈u1 . . . , uL, uL . . . , u1〉 = 〈z
p+ 1

2

. . . , z
q− 1

2

, z
q+ 1

2

. . . , z
p− 1

2

〉.

QED.
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